Higher-Order Hermite-Fejér Interpolation for Stieltjes Polynomials
نویسندگان
چکیده
منابع مشابه
Hermite and Hermite-Fejér interpolation for Stieltjes polynomials
Let wλ(x) := (1−x2)λ−1/2 and P (λ) n be the ultraspherical polynomials with respect to wλ(x). Then we denote by E (λ) n+1 the Stieltjes polynomials with respect to wλ(x) satisfying ∫ 1 −1 wλ(x)P (λ) n (x)E (λ) n+1(x)x dx { = 0, 0 ≤ m < n+ 1, = 0, m = n+ 1. In this paper, we show uniform convergence of the Hermite–Fejér interpolation polynomials Hn+1[·] and H2n+1[·] based on the zeros of the Sti...
متن کاملConvergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights
We investigate weighted Lp(0 < p <.) convergence of Hermite and Hermite– Fejér interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite– Fejér and Krylov–Stayermann interpolation polynomials. © 2001 Academic Press
متن کاملHigher order Hermite-Fejér interpolation polynomials with Laguerre-type weights
* Correspondence: hsun90@skku. edu Department of Mathematics Education, Sungkyunkwan University Seoul 110-745, Republic of Korea Full list of author information is available at the end of the article Abstract Let R = [0, ∞) and R : R ® R be a continuous function which is the Laguerretype exponent, and pn, r(x), ρ > − 2 be the orthonormal polynomials with the weight wr(x) = x r e. For the zeros ...
متن کاملOrthonormal polynomials for generalized Freud-type weights and higher-order Hermite-Feje'r interpolation polynomials
Let Q : R-R be even, nonnegative and continuous, Q0 be continuous, Q040 in ð0;NÞ; and let Q00 be continuous in ð0;NÞ: Furthermore, Q satisfies further conditions. We consider a certain generalized Freud-type weight W 2 rQðxÞ 1⁄4 jxj 2r expð 2QðxÞÞ: In previous paper (J. Approx. Theory 121 (2003) 13) we studied the properties of orthonormal polynomials fPnðW 2 rQ; xÞg N n1⁄40 with the generalize...
متن کاملQuantum Hermite Interpolation Polynomials
Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2013
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2013/542653